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Bučková B, Kopal J, Řasová K,
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1. INTRODUCTION

Multiple Sclerosis (MS) is a severe neurological condition, the incidence of which is growing on a
global scale, reporting over 2.2 million cases worldwide in 2016 (Wallin et al., 2019). The symptoms
associated with the disease vary and include gait and postural control changes, problems with
vision, sensory symptoms, cognitive decline, depression, and others (Kister et al., 2013). Despite
the seriousness of the condition, its’ relative rareness and heterogeneity obstructs the neuroimaging
research that could identify brain-dependent patterns that play a role in the disease’s progression.

It has been shown that acute relapse or chronic insult in people with MS may stimulate
brain plasticity mechanisms—the intrinsic cascades of the brain to functionally and structurally
reorganize itself in response to external stimuli. However, a gradual failure of these processes
to manage the increasing structural and functional changes caused by demyelination may
eventually lead to impairment (Pascual-Leone et al., 2005; Prosperini et al., 2015). It has been
hypothesized that by supporting the brain plasticity mechanisms via regular cognitive and
motoric exercise, the progression of the disease might be slowed down. The positive effect of
neurorehabilitation on brain activity has already been studied to some degree. Rasova et al.
reported an increased correlation of fMRI activity among hemispheres following 2 months of
eclectic rehabilitative therapy. Furthermore, they also found a decrease of effective connectivity
at supplementary motor areas (Rasova et al., 2005, 2015). This evidence was later supported by
other groups finding a beneficial functional reorganization in the sensory-motor network after
motor rehabilitation (Tavazzi et al., 2018; Fling et al., 2019; Prochazkova et al., 2020). Tomassini
et al. (2012) studied brain plasticity for visuomotor practice in MS patients and found it preserved
despite the extent of cerebral pathology. Another study observed a correlation between motor
improvements and fMRI modifications in MS patients after watching and imitating videos of
daily life (Rocca et al., 2019). However, as pointed out in a recent review, most of the research
in this domain suffers from the use of small sets of volunteers, which usually does not exceed
twenty (Prosperini and Di Filippo, 2019). This raises concerns about the interpretation and
generalization of reported findings, and makes the idea of sharing data more desirable (and
eventually inevitable) to gain credibility.

Considering the above, we share resting-state fMRI activity profiles across 60 people with MS
before and after 2 months of neuroproprioceptive “facilitation and inhibition” treatment. Our
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goal in sharing the data is to promote further research in
this area and improve reproducibility of any future reports.
The data were gathered using fMRI as it is a well-established
tool in studying neurological conditions (Lee et al., 2013). Its
value lies in recording spontaneous low-frequency fluctuations
in the blood oxygen level-dependent signal, allowing for the
inspection of functional processes across the brain. By measuring
the level of temporal dependence (e.g., correlation) of neuronal
activity among brain regions, we obtain functional connectivity
(FC) (Friston et al., 1993; Lee et al., 2013). FC may be
studied at various levels, ranging from the analysis of strengths
of correlation between two voxels to the identification and
characterization of large-scale networks (Du et al., 2018). The
most common approaches include model-driven analyses of
connectivity across pre-defined brain regions, and also data-
driven approaches based on decomposition methods. Moreover,
having two distinct recordings per subject, intra- as well as
inter-individual differences may be analyzed. Thus, the dataset
could be used to study effects of neurorehabilitation or to
reproduce the research investigating resting-state connectivity in
MS patients. In the latter case, the data are particularly well-
suited for examining interindividual variability in the clinical
symptoms. In general, the in-depth investigation of fMRI signals
has the potential to shed light on the neural correlates associated
with the disease (Enzinger et al., 2016; De Giglio et al., 2018;
Péran et al., 2020).

2. METHODS

2.1. Patients
People with MS were recruited from specialized centers in the
Czech Republic for 5 years. The recruitment period was spread
over two subsequent projects; the pilot project (NCT04448444)
ran within the years 2013–2014, with the consecutive project
following close in 2015–2017 (NCT04355663). The pre-defined
inclusion criteria in both projects consisted of a positive diagnosis
of MS (according to the Polman et al., 2011 criteria), Expanded
Disability Status Scale (EDSS) of maximum 7.5, neurologically
confirmed stable clinical status for a minimum of 3 months
prior to the study, notable spastic paraparesis among the
symptoms, and the ability to reach a rehabilitation center
regularly. The condition for the presence of motor impairment
and the closeness of the rehabilitation unit relates to the
original project purpose, which studied the effect of motor
rehabilitation on clinical as well as neurological biomarkers
(see, e.g., Prochazkova et al., 2020). The exclusion criteria were
defined as follows: mobility disturbed for reasons other than
those related to the disease (fractures, pregnancy, and others), or
the presence of other orthopedic, cardiovascular, or neurological
conditions. Patients were involved in the study independent of
MS phenotype—relapsing-remitting, primary progressive, and
secondary progressive.

The presented dataset contains resting fMRI from 60 patients
before and after 2 months of ambulatory “facilitation, inhibition”
physical therapy (Prochazkova et al., 2020). Participants were
assigned to one of three specific variants of the treatment:
Motor Program Activating Therapy, Vojta’s reflex locomotion,

and Functional Electric Stimulation in Posturally Corrected
Position. All treatments are based on similar principles. The
techniques focus on the appropriate combination of afferent
stimuli in pre-defined postural positions activating the motor
programs that lead to a motor reaction of the entire body with
the following effects:

• muscle synchronization—the co-contraction of an agonist and
antagonist

• functional centration—the best possible distribution of the
load at the articular surfaces

• the postural stabilization in the sagittal plane across the entire
body.

The data description is in Table 1. All participants were
informed about the experimental setup and provided written
informed consent following the Declaration of Helsinki. The
Ethics Committee of the Faculty Hospital Královské Vinohrady
approved the design of the studies.

2.2. Data Acquisition
Imaging was performed using a Siemens Trio 3T equipped with
a 12-channel phased-array head coil. The fMRI protocol in the
two projects slightly differed. Both acquisitions are described
below: Pilot project: BOLD single-shot echo-planar images
TR = 2,200 ms, TE = 30 ms, flip angle = 70◦, 64 × 56 matrix,
FOV = 192 × 168 mm2, 41 contiguous axial slices, 3.2 mm
thickness, 300 volumes, acquisition time = 11 min. Consecutive
project: BOLD single-shot echo-planar images TR = 2,500 ms,
TE = 30 ms, flip angle = 70◦, 64× 64 matrix, FOV = 192 mm2, 44
contiguous axial slices, 3 mm thickness, 240 volumes, acquisition
time = 10 min. In both projects, in addition to functional
imaging, we acquired T1-weighted images which were used
to increase the quality of preprocessing with the following
parameters: TR = 2,300 ms, TE = 4.63 ms, flip angle = 10◦,
256× 256 matrix, FOV = 256× 256 mm, 156 contiguous sagittal
slices, 1 mm thickness.

2.3. Data Processing
We preprocessed raw fMRI signals using the CONN toolbox
(McGovern Institute for Brain Research, MIT, USA) running

TABLE 1 | Data description.

Females Males All

No. 37 23 60

Age 48.0 (22, 70) 44.0 (29, 68) 46.0 (22, 70)

EDSS 4.0 (1, 6) 4.0 (1, 7) 4.0 (1, 7)

MS type RR/SP/PP 21/15/1 13/5/5 34/20/6

Years since diagnosis 13 (1, 38) 11 (1, 22) 12 (1, 38)

Therapy variant FES/MPAT/VRL 6/24/7 7/10/6 13/34/13

BMI 22.7 (16, 35) 23.1 (19, 36) 22.7 (16, 36)

No., number of patients; EDSS, Expanded Disability Status Scale; RR, relapsing-remitting;

PP, primary progressive; SP, secondary progressive; FES, functional electric stimulation;

MPAT, motor program activating therapy; VRL, Vojta reflex locomotion; age, EDSS, years

since diagnosis, and BMI are listed as median (min, max).
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under MATLAB (The Mathworks), and FSL (FMRIB Software
Library v5.0, http://www.fmrib.ox.ac.uk/fslwiki, Analysis Group,
FMRIB, Oxford, UK). For a detailed description of the CONN
pipeline, we recommend the online documentation (https://web.
conn-toolbox.org/home). Here we provide a short summary of
the main steps: functional realignment and unwarping, slice-
timing correction, outlier identification, direct segmentation and
normalization, and functional smoothing:

(1) In the first step, realigning and unwarping procedure is
used for coregistration and resampling of all scans to the first
scan using b-spline interpolation (Andersson et al., 2001). (2)
The temporal misalignment is corrected by time-shifting and
resampling the slices using the sinc-interpolation to match the
time in the middle of each acquisition (Henson et al., 1999). (3)
In the outlier identification procedure, the individual volumes
are flagged as potential outliers if the framewise displacement
(FD) of a given volume is above the default CONN Toolbox
threshold of 0.9 mm or global BOLD signal changes above
five standard deviations. (Note that as another step, a lower
threshold is typically applied on mean FD when deciding to
remove a whole subject. We leave this step at the discretion
of the dataset user). Averaging volumes without the potential
outliers subsequently determines the new reference image. This
image is further used for segmentation and normalization. (4)
All samples are normalized into standard MNI space. Scans are
then segmented into white matter, gray matter, and cerebrospinal
fluid. For this, the structural T1 images are used to improve
the quality of the registration, and the unified segmentation
and normalization procedure (Ashburner and Friston, 1997) is
employed. (5) Finally, fMRI signals are smoothed by convolving
them with an 8 mm Gaussian kernel, increasing the signal-
to-noise ratio. The preprocessed data are stored in the online
repository: https://osf.io/p2kj7.

2.4. Functional Connectivity Estimation
FC matrices were calculated by first extracting time series
from 116 regions of the AAL Atlas (Tzourio-Mazoyer et al.,
2002) which were linearly detrended (to remove possible signal
drift) and band-pass filtered with cutoff frequencies 0.009–
0.08 Hz. Filtering was performed after the regression and
implemented using a discrete cosine transform windowing
operation (Hallquist et al., 2013). For an intuitive visualization
of these steps, see Figure 1A. The time series were then
correlated, which resulted in the FC matrices. We are making
the matrices available to simplify the initial data processing
for users with less experience in fMRI analyses. Note that
linear correlation FC matrix was proven to capture sufficiently
functional connectivity (Hlinka et al., 2011) as well as its
topological structure (Hartman et al., 2011) and to provide
behaviorally and clinically relevant markers (Richiardi et al.,
2012; Chong et al., 2019). The average FC matrices of all subjects
across the first and second visit are shown in Figure 1D.

2.5. Outlier and Motion Artifact Detection
The elementary statistics of clinical variables are described in
Table 1 with the additional information on the distribution of
quantitative variables shown in Figure 1B. Two potential outliers

may be identified with respect to the number of years since
diagnosis—31 and 38 years. With respect to the BMI scale, there
are also two potential outliers with BMI values over 35.

As described in the third step of CONN preprocessing
pipeline, volumes across each subject are reviewed and,
depending on the criteria, may be flagged as potential outliers.
The first boxplot in Figure 1C shows the distribution of the
percentage of outliers in all volumes across subjects. The median
(standard deviation, minimum and maximum) percentage of
flagged volumes were as follows: 0.67% (2.99, 0, 15.83%) and
0.83% (3.06, 0, 17.5%) for the first and second visit, respectively.
We did identify four and six participants with a disproportionate
number of flagged volumes for visits one and two, respectively.

Additionally, we estimated the two most common head
motionmetrics during the preprocessing: derivative of root mean
square variance over voxels (DVARS) and FD (Power et al., 2014).
The DVARS measure captures signal intensity changes between
two consecutive volumes within a whole-brain mask (Smyser
et al., 2010). FD tracks headmovements between the volumes and
is estimated by summing the absolute values of the differentiated
realignment estimates (Power et al., 2012). By convention, the
value of bothmeasures is set to zero for the first volume.We show
boxplots of the average measures across subjects in Figure 1C

for better data overview. The measures can also be inspected
in detail as individual time series for each subject. Apart from
generally reflecting the data quality, these measures may be used
as covariates in the group-level analysis.

3. DATA STRUCTURE AND FORMAT

The structure of data is as follows: clinical.csv contains
clinical descriptors of all subjects, the measures of which
are in Table 1, i.e., patients’ sex, age during the first visit,
EDSS at the first visit, type of MS, the identifier of the
pilot/consecutive project, years since diagnosis, type of therapy,
and BMI. Moreover, variables “outliers_v1” and “outliers_v2”
contain the absolute number of volumes flagged as outliers
in visits one and two, respectively. The nifti directory
contains two preprocessed fMRI acquisitions (before and after
the neuroproprioceptive “facilitation and inhibition” treatment)
for each subject. quality_measures contains two *.csv files
DVARS.csv and FD.csv, which contain values of physical
displacement measured as a function of time for each subject
and session. Finally, the FC folder contains FC matrices derived
from each fMRI visit together with the AAL_labels.csv file
labeling regions of the AAL atlas. We also intend to release
the T1 images registered to the MNI space, which were used
for preprocessing. However, as they are currently a part of an
ongoing student thesis project, they will be upon the study results
(preprint) publication (planned within 18 months).

3.1. Projected Use of Data
The data may be used for studying the effect of
neuroproprioceptive “facilitation and inhibition” treatment
by investigating:

• changes in FC matrices
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FIGURE 1 | Overview of data. (A) Every subject’s data consists of two preprocessed visits providing fMRI time series across all voxels. The time series may be

averaged over atlas regions and correlated together to form functional connectivity matrices (see D). (B) Boxplots of quantitative clinical variables—Age, EDSS, Years

since diagnosis, and BMI. (C) Distributions of the percentage of outliers, average DVARS and average FD measures across all subjects (visit 1: blue, visit 2: orange).

(D) Average of functional connectivity matrices of the first and the second visit of all subjects and a difference of both matrices.

• large scale networks identified by data-driven methods such as
independent component analysis

• graph-theoretical measures derived from FC matrices and
others (Du et al., 2018).

Additionally, one of the visits may be used to design or validate
hypotheses concerning resting state-functional processes in MS
patients which are extensively studied (Bisecco et al., 2018; Bosma
et al., 2018; d’Ambrosio et al., 2020).
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